final case class TensorProto(dtype: DataType = ..., tensorShape: Option[TensorShapeProto] = _root_.scala.None, versionNumber: Int = 0, tensorContent: ByteString = ..., halfVal: Seq[Int] = _root_.scala.Seq.empty, floatVal: Seq[Float] = _root_.scala.Seq.empty, doubleVal: Seq[Double] = _root_.scala.Seq.empty, intVal: Seq[Int] = _root_.scala.Seq.empty, stringVal: Seq[ByteString] = _root_.scala.Seq.empty, scomplexVal: Seq[Float] = _root_.scala.Seq.empty, int64Val: Seq[Long] = _root_.scala.Seq.empty, boolVal: Seq[Boolean] = _root_.scala.Seq.empty, dcomplexVal: Seq[Double] = _root_.scala.Seq.empty, resourceHandleVal: Seq[ResourceHandleProto] = _root_.scala.Seq.empty, variantVal: Seq[VariantTensorDataProto] = _root_.scala.Seq.empty, uint32Val: Seq[Int] = _root_.scala.Seq.empty, uint64Val: Seq[Long] = _root_.scala.Seq.empty, unknownFields: UnknownFieldSet = ...) extends GeneratedMessage with Updatable[TensorProto] with Product with Serializable
Protocol buffer representing a tensor.
- tensorShape
Shape of the tensor. TODO(touts): sort out the 0-rank issues.
- versionNumber
Version number. In version 0, if the "repeated xxx" representations contain only one element, that element is repeated to fill the shape. This makes it easy to represent a constant Tensor with a single value.
- tensorContent
Serialized raw tensor content from either Tensor::AsProtoTensorContent or memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation can be used for all tensor types. The purpose of this representation is to reduce serialization overhead during RPC call by avoiding serialization of many repeated small items.
- halfVal
DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll have some pointless zero padding for each value here.
- floatVal
DT_FLOAT.
- doubleVal
DT_DOUBLE.
- intVal
DT_INT32, DT_INT16, DT_INT8, DT_UINT8.
- stringVal
DT_STRING
- scomplexVal
DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real and imaginary parts of i-th single precision complex.
- int64Val
DT_INT64
- boolVal
DT_BOOL
- dcomplexVal
DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real and imaginary parts of i-th double precision complex.
- resourceHandleVal
DT_RESOURCE
- variantVal
DT_VARIANT
- uint32Val
DT_UINT32
- uint64Val
DT_UINT64
- Annotations
- @SerialVersionUID()
- Alphabetic
- By Inheritance
- TensorProto
- Updatable
- GeneratedMessage
- Serializable
- Serializable
- Product
- Equals
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
TensorProto(dtype: DataType = ..., tensorShape: Option[TensorShapeProto] = _root_.scala.None, versionNumber: Int = 0, tensorContent: ByteString = ..., halfVal: Seq[Int] = _root_.scala.Seq.empty, floatVal: Seq[Float] = _root_.scala.Seq.empty, doubleVal: Seq[Double] = _root_.scala.Seq.empty, intVal: Seq[Int] = _root_.scala.Seq.empty, stringVal: Seq[ByteString] = _root_.scala.Seq.empty, scomplexVal: Seq[Float] = _root_.scala.Seq.empty, int64Val: Seq[Long] = _root_.scala.Seq.empty, boolVal: Seq[Boolean] = _root_.scala.Seq.empty, dcomplexVal: Seq[Double] = _root_.scala.Seq.empty, resourceHandleVal: Seq[ResourceHandleProto] = _root_.scala.Seq.empty, variantVal: Seq[VariantTensorDataProto] = _root_.scala.Seq.empty, uint32Val: Seq[Int] = _root_.scala.Seq.empty, uint64Val: Seq[Long] = _root_.scala.Seq.empty, unknownFields: UnknownFieldSet = ...)
- tensorShape
Shape of the tensor. TODO(touts): sort out the 0-rank issues.
- versionNumber
Version number. In version 0, if the "repeated xxx" representations contain only one element, that element is repeated to fill the shape. This makes it easy to represent a constant Tensor with a single value.
- tensorContent
Serialized raw tensor content from either Tensor::AsProtoTensorContent or memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation can be used for all tensor types. The purpose of this representation is to reduce serialization overhead during RPC call by avoiding serialization of many repeated small items.
- halfVal
DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll have some pointless zero padding for each value here.
- floatVal
DT_FLOAT.
- doubleVal
DT_DOUBLE.
- intVal
DT_INT32, DT_INT16, DT_INT8, DT_UINT8.
- stringVal
DT_STRING
- scomplexVal
DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real and imaginary parts of i-th single precision complex.
- int64Val
DT_INT64
- boolVal
DT_BOOL
- dcomplexVal
DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real and imaginary parts of i-th double precision complex.
- resourceHandleVal
DT_RESOURCE
- variantVal
DT_VARIANT
- uint32Val
DT_UINT32
- uint64Val
DT_UINT64
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def addAllBoolVal(__vs: Iterable[Boolean]): TensorProto
- def addAllDcomplexVal(__vs: Iterable[Double]): TensorProto
- def addAllDoubleVal(__vs: Iterable[Double]): TensorProto
- def addAllFloatVal(__vs: Iterable[Float]): TensorProto
- def addAllHalfVal(__vs: Iterable[Int]): TensorProto
- def addAllInt64Val(__vs: Iterable[Long]): TensorProto
- def addAllIntVal(__vs: Iterable[Int]): TensorProto
- def addAllResourceHandleVal(__vs: Iterable[ResourceHandleProto]): TensorProto
- def addAllScomplexVal(__vs: Iterable[Float]): TensorProto
- def addAllStringVal(__vs: Iterable[ByteString]): TensorProto
- def addAllUint32Val(__vs: Iterable[Int]): TensorProto
- def addAllUint64Val(__vs: Iterable[Long]): TensorProto
- def addAllVariantVal(__vs: Iterable[VariantTensorDataProto]): TensorProto
- def addBoolVal(__vs: Boolean*): TensorProto
- def addDcomplexVal(__vs: Double*): TensorProto
- def addDoubleVal(__vs: Double*): TensorProto
- def addFloatVal(__vs: Float*): TensorProto
- def addHalfVal(__vs: Int*): TensorProto
- def addInt64Val(__vs: Long*): TensorProto
- def addIntVal(__vs: Int*): TensorProto
- def addResourceHandleVal(__vs: ResourceHandleProto*): TensorProto
- def addScomplexVal(__vs: Float*): TensorProto
- def addStringVal(__vs: ByteString*): TensorProto
- def addUint32Val(__vs: Int*): TensorProto
- def addUint64Val(__vs: Long*): TensorProto
- def addVariantVal(__vs: VariantTensorDataProto*): TensorProto
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val boolVal: Seq[Boolean]
- def clearBoolVal: TensorProto
- def clearDcomplexVal: TensorProto
- def clearDoubleVal: TensorProto
- def clearFloatVal: TensorProto
- def clearHalfVal: TensorProto
- def clearInt64Val: TensorProto
- def clearIntVal: TensorProto
- def clearResourceHandleVal: TensorProto
- def clearScomplexVal: TensorProto
- def clearStringVal: TensorProto
- def clearTensorShape: TensorProto
- def clearUint32Val: TensorProto
- def clearUint64Val: TensorProto
- def clearVariantVal: TensorProto
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
companion: TensorProto.type
- Definition Classes
- TensorProto → GeneratedMessage
- val dcomplexVal: Seq[Double]
- def discardUnknownFields: TensorProto
- val doubleVal: Seq[Double]
- val dtype: DataType
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val floatVal: Seq[Float]
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getField(__field: FieldDescriptor): PValue
- Definition Classes
- TensorProto → GeneratedMessage
-
def
getFieldByNumber(__fieldNumber: Int): Any
- Definition Classes
- TensorProto → GeneratedMessage
- def getTensorShape: TensorShapeProto
- val halfVal: Seq[Int]
- val int64Val: Seq[Long]
- val intVal: Seq[Int]
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- val resourceHandleVal: Seq[ResourceHandleProto]
- val scomplexVal: Seq[Float]
-
def
serializedSize: Int
- Definition Classes
- TensorProto → GeneratedMessage
- val stringVal: Seq[ByteString]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- val tensorContent: ByteString
- val tensorShape: Option[TensorShapeProto]
-
final
def
toByteArray: Array[Byte]
- Definition Classes
- GeneratedMessage
-
final
def
toByteString: ByteString
- Definition Classes
- GeneratedMessage
-
final
def
toPMessage: PMessage
- Definition Classes
- GeneratedMessage
-
def
toProtoString: String
- Definition Classes
- TensorProto → GeneratedMessage
- val uint32Val: Seq[Int]
- val uint64Val: Seq[Long]
- val unknownFields: UnknownFieldSet
-
def
update(ms: (Lens[TensorProto, TensorProto]) ⇒ Mutation[TensorProto]*): TensorProto
- Definition Classes
- Updatable
- val variantVal: Seq[VariantTensorDataProto]
- val versionNumber: Int
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- def withBoolVal(__v: Seq[Boolean]): TensorProto
- def withDcomplexVal(__v: Seq[Double]): TensorProto
- def withDoubleVal(__v: Seq[Double]): TensorProto
- def withDtype(__v: DataType): TensorProto
- def withFloatVal(__v: Seq[Float]): TensorProto
- def withHalfVal(__v: Seq[Int]): TensorProto
- def withInt64Val(__v: Seq[Long]): TensorProto
- def withIntVal(__v: Seq[Int]): TensorProto
- def withResourceHandleVal(__v: Seq[ResourceHandleProto]): TensorProto
- def withScomplexVal(__v: Seq[Float]): TensorProto
- def withStringVal(__v: Seq[ByteString]): TensorProto
- def withTensorContent(__v: ByteString): TensorProto
- def withTensorShape(__v: TensorShapeProto): TensorProto
- def withUint32Val(__v: Seq[Int]): TensorProto
- def withUint64Val(__v: Seq[Long]): TensorProto
- def withUnknownFields(__v: UnknownFieldSet): TensorProto
- def withVariantVal(__v: Seq[VariantTensorDataProto]): TensorProto
- def withVersionNumber(__v: Int): TensorProto
-
final
def
writeDelimitedTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
-
def
writeTo(_output__: CodedOutputStream): Unit
- Definition Classes
- TensorProto → GeneratedMessage
-
final
def
writeTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated