Packages

final case class TensorProto(dtype: DataType = ..., tensorShape: Option[TensorShapeProto] = _root_.scala.None, versionNumber: Int = 0, tensorContent: ByteString = ..., halfVal: Seq[Int] = _root_.scala.Seq.empty, floatVal: Seq[Float] = _root_.scala.Seq.empty, doubleVal: Seq[Double] = _root_.scala.Seq.empty, intVal: Seq[Int] = _root_.scala.Seq.empty, stringVal: Seq[ByteString] = _root_.scala.Seq.empty, scomplexVal: Seq[Float] = _root_.scala.Seq.empty, int64Val: Seq[Long] = _root_.scala.Seq.empty, boolVal: Seq[Boolean] = _root_.scala.Seq.empty, dcomplexVal: Seq[Double] = _root_.scala.Seq.empty, resourceHandleVal: Seq[ResourceHandleProto] = _root_.scala.Seq.empty, variantVal: Seq[VariantTensorDataProto] = _root_.scala.Seq.empty, uint32Val: Seq[Int] = _root_.scala.Seq.empty, uint64Val: Seq[Long] = _root_.scala.Seq.empty, unknownFields: UnknownFieldSet = ...) extends GeneratedMessage with Updatable[TensorProto] with Product with Serializable

Protocol buffer representing a tensor.

tensorShape

Shape of the tensor. TODO(touts): sort out the 0-rank issues.

versionNumber

Version number. In version 0, if the "repeated xxx" representations contain only one element, that element is repeated to fill the shape. This makes it easy to represent a constant Tensor with a single value.

tensorContent

Serialized raw tensor content from either Tensor::AsProtoTensorContent or memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation can be used for all tensor types. The purpose of this representation is to reduce serialization overhead during RPC call by avoiding serialization of many repeated small items.

halfVal

DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll have some pointless zero padding for each value here.

floatVal

DT_FLOAT.

doubleVal

DT_DOUBLE.

intVal

DT_INT32, DT_INT16, DT_INT8, DT_UINT8.

stringVal

DT_STRING

scomplexVal

DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real and imaginary parts of i-th single precision complex.

int64Val

DT_INT64

boolVal

DT_BOOL

dcomplexVal

DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real and imaginary parts of i-th double precision complex.

resourceHandleVal

DT_RESOURCE

variantVal

DT_VARIANT

uint32Val

DT_UINT32

uint64Val

DT_UINT64

Annotations
@SerialVersionUID()
Linear Supertypes
Updatable[TensorProto], GeneratedMessage, Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TensorProto
  2. Updatable
  3. GeneratedMessage
  4. Serializable
  5. Serializable
  6. Product
  7. Equals
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TensorProto(dtype: DataType = ..., tensorShape: Option[TensorShapeProto] = _root_.scala.None, versionNumber: Int = 0, tensorContent: ByteString = ..., halfVal: Seq[Int] = _root_.scala.Seq.empty, floatVal: Seq[Float] = _root_.scala.Seq.empty, doubleVal: Seq[Double] = _root_.scala.Seq.empty, intVal: Seq[Int] = _root_.scala.Seq.empty, stringVal: Seq[ByteString] = _root_.scala.Seq.empty, scomplexVal: Seq[Float] = _root_.scala.Seq.empty, int64Val: Seq[Long] = _root_.scala.Seq.empty, boolVal: Seq[Boolean] = _root_.scala.Seq.empty, dcomplexVal: Seq[Double] = _root_.scala.Seq.empty, resourceHandleVal: Seq[ResourceHandleProto] = _root_.scala.Seq.empty, variantVal: Seq[VariantTensorDataProto] = _root_.scala.Seq.empty, uint32Val: Seq[Int] = _root_.scala.Seq.empty, uint64Val: Seq[Long] = _root_.scala.Seq.empty, unknownFields: UnknownFieldSet = ...)

    tensorShape

    Shape of the tensor. TODO(touts): sort out the 0-rank issues.

    versionNumber

    Version number. In version 0, if the "repeated xxx" representations contain only one element, that element is repeated to fill the shape. This makes it easy to represent a constant Tensor with a single value.

    tensorContent

    Serialized raw tensor content from either Tensor::AsProtoTensorContent or memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation can be used for all tensor types. The purpose of this representation is to reduce serialization overhead during RPC call by avoiding serialization of many repeated small items.

    halfVal

    DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll have some pointless zero padding for each value here.

    floatVal

    DT_FLOAT.

    doubleVal

    DT_DOUBLE.

    intVal

    DT_INT32, DT_INT16, DT_INT8, DT_UINT8.

    stringVal

    DT_STRING

    scomplexVal

    DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real and imaginary parts of i-th single precision complex.

    int64Val

    DT_INT64

    boolVal

    DT_BOOL

    dcomplexVal

    DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real and imaginary parts of i-th double precision complex.

    resourceHandleVal

    DT_RESOURCE

    variantVal

    DT_VARIANT

    uint32Val

    DT_UINT32

    uint64Val

    DT_UINT64

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def addAllBoolVal(__vs: Iterable[Boolean]): TensorProto
  5. def addAllDcomplexVal(__vs: Iterable[Double]): TensorProto
  6. def addAllDoubleVal(__vs: Iterable[Double]): TensorProto
  7. def addAllFloatVal(__vs: Iterable[Float]): TensorProto
  8. def addAllHalfVal(__vs: Iterable[Int]): TensorProto
  9. def addAllInt64Val(__vs: Iterable[Long]): TensorProto
  10. def addAllIntVal(__vs: Iterable[Int]): TensorProto
  11. def addAllResourceHandleVal(__vs: Iterable[ResourceHandleProto]): TensorProto
  12. def addAllScomplexVal(__vs: Iterable[Float]): TensorProto
  13. def addAllStringVal(__vs: Iterable[ByteString]): TensorProto
  14. def addAllUint32Val(__vs: Iterable[Int]): TensorProto
  15. def addAllUint64Val(__vs: Iterable[Long]): TensorProto
  16. def addAllVariantVal(__vs: Iterable[VariantTensorDataProto]): TensorProto
  17. def addBoolVal(__vs: Boolean*): TensorProto
  18. def addDcomplexVal(__vs: Double*): TensorProto
  19. def addDoubleVal(__vs: Double*): TensorProto
  20. def addFloatVal(__vs: Float*): TensorProto
  21. def addHalfVal(__vs: Int*): TensorProto
  22. def addInt64Val(__vs: Long*): TensorProto
  23. def addIntVal(__vs: Int*): TensorProto
  24. def addResourceHandleVal(__vs: ResourceHandleProto*): TensorProto
  25. def addScomplexVal(__vs: Float*): TensorProto
  26. def addStringVal(__vs: ByteString*): TensorProto
  27. def addUint32Val(__vs: Int*): TensorProto
  28. def addUint64Val(__vs: Long*): TensorProto
  29. def addVariantVal(__vs: VariantTensorDataProto*): TensorProto
  30. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  31. val boolVal: Seq[Boolean]
  32. def clearBoolVal: TensorProto
  33. def clearDcomplexVal: TensorProto
  34. def clearDoubleVal: TensorProto
  35. def clearFloatVal: TensorProto
  36. def clearHalfVal: TensorProto
  37. def clearInt64Val: TensorProto
  38. def clearIntVal: TensorProto
  39. def clearResourceHandleVal: TensorProto
  40. def clearScomplexVal: TensorProto
  41. def clearStringVal: TensorProto
  42. def clearTensorShape: TensorProto
  43. def clearUint32Val: TensorProto
  44. def clearUint64Val: TensorProto
  45. def clearVariantVal: TensorProto
  46. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @HotSpotIntrinsicCandidate()
  47. def companion: TensorProto.type
    Definition Classes
    TensorProto → GeneratedMessage
  48. val dcomplexVal: Seq[Double]
  49. def discardUnknownFields: TensorProto
  50. val doubleVal: Seq[Double]
  51. val dtype: DataType
  52. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  53. val floatVal: Seq[Float]
  54. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  55. def getField(__field: FieldDescriptor): PValue
    Definition Classes
    TensorProto → GeneratedMessage
  56. def getFieldByNumber(__fieldNumber: Int): Any
    Definition Classes
    TensorProto → GeneratedMessage
  57. def getTensorShape: TensorShapeProto
  58. val halfVal: Seq[Int]
  59. val int64Val: Seq[Long]
  60. val intVal: Seq[Int]
  61. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  62. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  63. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  64. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  65. val resourceHandleVal: Seq[ResourceHandleProto]
  66. val scomplexVal: Seq[Float]
  67. def serializedSize: Int
    Definition Classes
    TensorProto → GeneratedMessage
  68. val stringVal: Seq[ByteString]
  69. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  70. val tensorContent: ByteString
  71. val tensorShape: Option[TensorShapeProto]
  72. final def toByteArray: Array[Byte]
    Definition Classes
    GeneratedMessage
  73. final def toByteString: ByteString
    Definition Classes
    GeneratedMessage
  74. final def toPMessage: PMessage
    Definition Classes
    GeneratedMessage
  75. def toProtoString: String
    Definition Classes
    TensorProto → GeneratedMessage
  76. val uint32Val: Seq[Int]
  77. val uint64Val: Seq[Long]
  78. val unknownFields: UnknownFieldSet
  79. def update(ms: (Lens[TensorProto, TensorProto]) ⇒ Mutation[TensorProto]*): TensorProto
    Definition Classes
    Updatable
  80. val variantVal: Seq[VariantTensorDataProto]
  81. val versionNumber: Int
  82. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  83. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  84. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  85. def withBoolVal(__v: Seq[Boolean]): TensorProto
  86. def withDcomplexVal(__v: Seq[Double]): TensorProto
  87. def withDoubleVal(__v: Seq[Double]): TensorProto
  88. def withDtype(__v: DataType): TensorProto
  89. def withFloatVal(__v: Seq[Float]): TensorProto
  90. def withHalfVal(__v: Seq[Int]): TensorProto
  91. def withInt64Val(__v: Seq[Long]): TensorProto
  92. def withIntVal(__v: Seq[Int]): TensorProto
  93. def withResourceHandleVal(__v: Seq[ResourceHandleProto]): TensorProto
  94. def withScomplexVal(__v: Seq[Float]): TensorProto
  95. def withStringVal(__v: Seq[ByteString]): TensorProto
  96. def withTensorContent(__v: ByteString): TensorProto
  97. def withTensorShape(__v: TensorShapeProto): TensorProto
  98. def withUint32Val(__v: Seq[Int]): TensorProto
  99. def withUint64Val(__v: Seq[Long]): TensorProto
  100. def withUnknownFields(__v: UnknownFieldSet): TensorProto
  101. def withVariantVal(__v: Seq[VariantTensorDataProto]): TensorProto
  102. def withVersionNumber(__v: Int): TensorProto
  103. final def writeDelimitedTo(output: OutputStream): Unit
    Definition Classes
    GeneratedMessage
  104. def writeTo(_output__: CodedOutputStream): Unit
    Definition Classes
    TensorProto → GeneratedMessage
  105. final def writeTo(output: OutputStream): Unit
    Definition Classes
    GeneratedMessage

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Updatable[TensorProto]

Inherited from GeneratedMessage

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped